FTTx技术主要用于接入网络光纤化,范围从区域电信机房的局端设备到用户终端设备,局端设备为光线路终端(Optical Line Terminal; OLT)、用户端设备为光网络单元(Optical Network Unit; ONU)或光网络终端(Optical Network Terminal; ONT)。根据光纤到用户的距离来分类,如图1所示,可分成光纤到交换箱(Fiber To The Cabinet; FTTCab)、光纤到路边(Fiber To The Curb; FTTC)、光纤到大楼(Fiber To The Building; FTTB)及光纤到户(Fiber To The Home; FTTH)等4种服务形态。美国运营商Verizon将FTTB及FTTH合称光纤到驻地(Fiber To The Premise; FTTP)。上述服务可统称FTTx。
1.1.FTTC
FTTC为目前最主要的服务形式,主要是为住宅区的用户作服务,将ONU设备放置于路边机箱,利用ONU出来的同轴电缆传送CATV信号或双绞线传送电话及上网服务。 1.2.FTTB FTTB依服务对象区分有两种,一种是公寓大厦的用户服务,另一种是商业大楼的企业行号服务,两种皆将ONU设置在大楼的地下室配线箱处,只是公寓大厦的ONU是FTTC的延伸,而商业大楼是为了中大型企业单位,必须提高传输的速率,以提供高速的数据、电子商务、视频会议等宽带服务。 1.3.FTTH 至于FTTH,ITU认为从光纤端头的光电转换器(或称为媒体转换器MC)到用户桌面不超过100米的情况才是FTTH。FTTH将光纤的距离延伸到终端用户家里,使得家庭内能提供各种不同的宽带服务,如VOD、在家购物、在家上课等,提供更多的商机。若搭配WLAN技术,将使得宽带与移动结合,则可以达到未来宽带数字家庭的远景。 2.FTTx技术分类 光纤连接ONU主要有两种方式,一种是点对点形式拓扑(Point to Point; P2P),从中心局到每个用户都用一根光纤;另外一种是使用点对多点形式拓扑方式(Point to Multi-Point; P2MP)的无源光网络(Passive Optical Network; PON),其拓扑结构如图2所示。对于具有N个终端用户的距离为M km的无保护FTTx系统,如果采用点到点的方案,需要2N个光收发器和NM km的光纤。但如果采用点到多点的方案,则需要N十1个光收发器、一个或多个(视N的大小)光分路器、和大约M km的光纤,在这一点上,采用点到多点的方案,地降低了光收发器的数量和光纤用量,并降低了中心局所需的机架空间,有着明显的成本优势。 2.1.点到点的FTTx解决方案 点对点直接光纤连接具有容易管理、没有复杂的上行同步技术和终端自动识别等优点。另外上行的全部带宽可被一个终端所用,这非常有利于带宽的扩展。但是这些优点并不能抵消它在器件和光纤成本方面的劣势。 Ethernet + Media Converter就是一种过渡性的点对点FTTH方案,此种方案使用媒体转换器(Media Converter;MC)方式将电信号转换成光信号进行长距离的传输。其中MC是一个单纯的光电/电光转换器,它并不对信号包做加工,因此成本低廉。这种方案的好处是对于已有的电的Ethernet设备只需要加上MC即可。MC方式的拓扑结构如图3所示。对于目前已经普及的100 Mbps Ethernet网络而言,100 Mbps的速率也可满足接入网的需求,不必更换支撑光纤传输的网卡,只需要加上MC,这样用户可以减少升级的成本,是点对点FTTH方案过渡期间网络的解决方案。由于其技术架构相当简单、便宜并直接结合以太网络而一度成为日本FTTH的主流,但在2004 OFC会议中,NTT宣称将从现在起日本FTTH标案将采取点对多点(Point to Multi-Point, P2MP)架构的PON网络模式,势必将影响MC的未来。 2.2.点到多点的FTTx解决方案 在光接人网中,如果光配线网(ODN)全部由无源器件组成,不包括任何有源节点,则这种光接人网就是PON。PON的架构主要是将从光纤线路终端设备OLT下行的光信号,通过一根光纤经由无源器件Splitter(光分路器),将光信号分路广播给各用户终端设备ONU/T,这样就大幅减少网络机房及设备维护的成本,更节省了大量光缆资源等建置成本,PON因而成为FTTH最新热门技术。PON技术始于20世纪80年代初,目前市场上的PON产品按照其采用的技术,主要分为APON/BPON(ATM PON/宽带PON)、EPON(以太网PON)和GPON(千兆比特PON),其中,GPON是最新标准化和产品化的技术。不同PON技术有着不同的优缺点,如表1所示。 2.3.PON接入网技术 PON作为一种接入网技术,定位在常说的“最后一公里”,也就是在服务提供商、电信局端和商业用户或家庭用户之间的解决方案。 随着宽带应用越来越多,尤其是视频和端到端应用的兴起,人们对带宽的需求越来越强烈。在北美,每个用户的带宽需求在5年内将达到20~50Mb/s,而在10年内将达到70Mb/s。在如此高的带宽需求下,传统的技术将无法胜任,而PON技术却可以大显身手。 1987年英国电信企业的研究人员最早提出了PON的概念。下面对几种分别进行先容。 APON是在1995年提出的,当时,ATM被希望为在局域网(LAN)、城域网(MAN)和主干网占据主要地位。各大电信设备制造商也研发出了APON产品,目前在北美、日本和欧洲都有APON产品的实际应用。然而APON经过多年的发展,并没有很好的占领市场。主要原因是ATM协议复杂,APON的推广受阻的影响,另外设备价格较高,相对于接入网市场来说还较昂贵。由于APON只能为用户端提供ATM服务,2001年底FSAN更新网页把APON改名为BPON,即“宽带PON”, APON标准衍变成为能够提供其他宽带服务(如Ethernet接入、视频广播和高速专线等)的BPON标准。 在局域网领域,Ethernet技术高速发展。Ethernet已经发展成为了一个广为接受的标准,现在全球有超过400万个以太端口,95%的LAN都是使用Ethernet技术。Ethernet技术发展很快,传输速率从 10 Mbit/s、100Mbit/s到1000Mbit/s、10 Gbit/s甚至40 Gbit/s,呈数量级提高;应用环境也从LAN向MAN、核心网发展。 EPON就是是由IEEE 802.3工作组在2000年11月成立的EFM(Ethernet in the First Mile)研究小组提出的。EPON是几个最佳的技术和网络结构的结合。EPON以Ethernet为载体,采用点到多点结构、无源光纤传输方式,下行速率目前可达到10 Gbit/s,上行以突发的以太网包方式发送数据流。另外,EPON也提供一定的运行维护和管理(OAM)功能。 EPON技术和现有的设备具有很好的兼容性。而且EPON还可以轻松实现带宽到10 Gbit/s的平滑升级。新发展的服务质量(QoS)技术使以太网对语音、数据和图像业务的支撑成为可能。这些技术包括全双工支撑、优先级(p802.1p)和虚拟局域网(VLAN)。但目前Ethernet支撑多业务的标准还没有形成,它对非数据业务,尤其是TDM业务还不能很好地支撑。另外,和GPON相比它的传输效率较低。 2001年,FSAN组启动了另外一项标准工作,旨在规范工作速率高于1Gbit/s的PON网络.这项工作被称为Gigabit PON(GPON)。GPON除了支撑更高的速率之外,还要以很高的效率支撑多种业务,提供丰富的OAM&P功能和良好的扩展性。大多数先进国家运营商的代表,提出一整套“吉比特业务需求”(GSR)文档,作为提交ITU-T的标准之一;反过来又成为提议和开发GPON解决方案的基础。这说明GPON是一种按照消费者的准确需求设计、由运营商驱动的解决方案,是值得产品用户信赖的。 3.光纤回路分类 FTTx在传输层的设计中分为三类,分别是Duplex双纤双向回路,Simplex单纤双向回路和Triplex单纤三向回路。其中双纤回路是在OLT端和ONU端之间使用两路光纤连接,一路为下行(Downstream),信号由OLT端到ONU端;另一路为上行(Upstream),信号由ONU端到OLT端。Simplex单纤回路又称为Bidirectional,简称BIDI,这种方案只使用一条光纤连接OLT端和ONU端,并利用WDM方式,以不同波长的光信号分别传送上行和下行的信号。这种利用WDM方式传输的单纤回路和Duplex双纤回路相比可减少一半的光纤使用量,可以降低ONU用户端的成本,但是使用单纤方式时在光收发模块上要引入分光合光单元,架构比使用双纤方式的光收发模块复杂一点。BIDI上行信号选用1260至1360 nm波段的激光传输,下行则使用1480至1580 nm波段。而在双纤回路中则是上下行都使用1310 nm波段传送信号。
|