[1] LARSSON E G, EDFORS O, TUFVESSON F, et al. Massive MIMO for next generation wireless systems[J]. IEEE Communications Magazine, 2014,52(2):186-195.
[2] KOTTERMAN W, SCHIRMER C, LANDMANN M H, et al. New challenges in over-the-air testing[C]//Proc of European Conference on Antennas and Propagation (EUCAP). France: IEEE Press, 2017:3676-3678.
[3] SHARMA S K, CHATZINOTAS S, OTTERSTEN B. Transmit beam-forming for spectral coexistence of satellite and terrestrial networks[C]//Proc of International Conference on Cognitive Radio Oriented Wireless Networks. Pisca-taway, NJ: IEEE Press, 2013:275-281.
[4] FAN W, KYOSTI P, MORAY R, et al. Over-the-air radiated testing of millimeter-wave beam-steerable devices in a cost-effective measurement setup[J]. IEEE Communica-tions Magazine, 2018,56(7):64-71.
[5] Spirent. Wireless channel emulator: VR5 HD spatial channelemulator[EB/OL]. (2015-04-05)[2022-03-20]. https://www.spirent.com/media/Da ... /VR5_Datasheet.pdf.
[6] YU W, QI Y, LIU K, et al. Radiated two-stage method for LTE MIMO user equipment performance evaluation[J]. IEEE Transactions on Electromagnetic Compatibility, 2014,56(6):1691-1696.
[7] FAN W, KYOSTI P, LASSI H, et al. A flexible millimeter wave radio channel emulator design with experimentalvalidations[J]. IEEE Transactions on Antennas and Propagation, 2018,66(11):6446-6451.
[8] SAMIMI M K, RAPPAPORT T S. Ultra-wideband statistical channel model for non-line of sight millimeter-wave urban channels[C]//Proc Global Telecommun. Confer-ence (GLOBECOM), Austin: IEEE Press, 2014.
[9] KARTTUNEN A, JARVELAINEN J, KHATUN A, et al. Radio propagation measurements and WINNER II parametrization for a shopping mall at 61-65 GHz[C]//Proc Vehicular Technology Conference (VTC), Scotland: IEEE Press, 2015.
[10] KYOSTI P, HENTIL L, WEI F, et al. On radiated performance evaluation of massive MIMO devices in multiprobe anechoic chamber OTA setups[J]. IEEE Transactions on Antennas and Propagation, 2018,66(10):5485-5497.
[11] LI Y, XIN L, ZHANG X. On probe weighting for massive MIMO OTA testing based on angular spectrum similarity[J]. IEEE Antennas and Wireless Propagation Letters, 2019,18(7):1497-1501.
[12] KYOSTI P, HENTILA L, KYROLAINEN J, et al. Emulating dynamic radio channels for radiated testing of massive MIMO devices[C]//Proc European Conference on Antennas and Propagation (EuCAP), UK: IET Press, 2018.
[13] WANG C X, JI B, JIAN S, et al. A survey of 5G channel measurements and models[J]. IEEE Communications Surveys & Tutorials, 2018,20(4):3142-3168.
[14] MIHAILOVICH R E. MEM relay for reconfigurable RF circuits[J]. IEEE Microwave and Wireless Components Letters, 2001,11(2):53-55.
[15] XIN L, LI Y, SUN H, et al. OTA testing for massive MIMO devices using cascaded APM networks and channel emulators[J]. International Journal of Antennas and Propagation, 2019(10):1-14.
[16] JUNGNICKEL V, JAECKEL S, THIELE L, et al. Capacity measurements in a cooperative MIMO network[J]. IEEE Transactions on Vehicular Technology,2009,58(5):2392-2405.
[17] 3GPP. 3GPP TR 38. 827 V16. 2. 0, Study on radiated metrics and test methodology for the verification of multi-antenna reception performance of NR User Equipment (UE)[R], 2021.
[18] FAN W, CARRENO B L, SUN F, et al. Emulating spatial characteristics of MIMO channels for OTA testing[J]. IEEE Transactions on Antenna and Propagation, 2013,61(8):4306-4314.
[19] RAO K D, SWAMY M. Spectral analysis of signals[M]. USA: Prentice-Hall, 2005.
Research on over-the-air performance testing methods for millimeter-wave massive MIMO
SUN Hao, WU Xiang, PAN Chong
(Mobile Communications Innovation Center, China Academy of Information and Communications Technology, Beijing 100191, China)
Abstract: In this paper, over-the-air (OTA) testing for millimeter-wave (mmWave) massive multiple-input multipleoutput (MIMO) devices is taken as the research background, which aims to study the impact of charac-teristics of mmWave channels on the OTA testing system. Further, the suitaable algorithms for mmWave channel emulation and OTA testing system are studied to evaluate the performance of mmWave devices in the anechoic chamber. Unlike the OTA testing in the Sub-6 GHz frequency band, the specific characteristics of mmWave channels are analyzed successively, such as large bandwidth, sparsity, dynamic characteristics and spherical wavefront, and each of which will have a significant impact on the structure of the OTA testing system and the theory for channel emulation. Moreover, two kinds of system models and their implementation principles that can be used for the mmWave OTA testing are elaborated. Finally, the defects of mmWave channel emulation based on spatial correlation are discussed, and the significance and advantages of spatial spectrum based metric are also analyzed. Furthermore, how to quickly determine the probe weights at any time is proposed in this paper.
Keywords: beamforming; mmWave channel; OTA testing; spatial correlation